November 1, 2018

Data for 3D model of Neurofibromatosis Type 1 Plexiform Neurofibromas now openly available to research community

A team of researchers from Wayne State University School of Medicine led by Raymond Mattingly, Ph.D., professor and chair of Pharmacology for the WSU School of Medicine, has established and optimized what is believed to be the first 3-D model of plexiform neurofibroma cells.

Neurofibromas are tumors of the nerve found most commonly in people with neurofibromatosis type I, or NF1. NF1 is a neurogenetic disease with an estimated prevalence of one is every 2,500 to 3,000 people. A type of neurofibroma called a plexiform neurofibroma affects up to 50 percent of people with NF1. These tumors can cause weakness, sensory changes, deformity and pain, and have a risk of converting to deadly sarcomas called malignant peripheral nerve sheath tumors. The development and optimization of a robust 3-D model of NF1 plexiform neurofibroma has long been desired because it is thought to be a more accurate representation of slow-growing "finicky" Schwann cells (the neoplastic cell of neurofibromas) than 2-D culture systems, but be far less time and resource intensive than genetically-engineered mouse models. The new models provide an innovative way to conduct drug screenings and investigate clinically important aspects of plexiform neurofibroma cell-cell interaction at baseline and in response to drug exposure.

The work is described in "Development of 3D Culture Models of Plexiform Neurofibroma and Initial Application for Phenotypic Characterization and Drug Screening," published in the journal Experimental Neurology.

All data generated from the project is accessible through the Synapse portal managed by Sage Bionetworks, a Seattle-based nonprofit biomedical research organization founded in 2009 to promote innovations in personalized medicine by enabling a community-based approach to scientific inquiries and discoveries. By making this genetic and molecular data openly accessible to the global research community, the investigators and sponsors hope to foster collaborations that will collectively advance efforts in developing effective therapies to prevent or treat neurofibromas.

Development of therapies for human disease remains dependent on well-characterized and validated model systems for pre-clinical therapeutic testing. Most in vitro drug testing is performed on cells growing in two dimensions on plastic dishes. In comparison to 2-D cultures, cells growing in a 3-dimensional matrix may more accurately model the physiological environment and allow for assessment of cell-cell interaction in response to drug. Cells in 3-D models also exhibit growth patterns more akin to those in the living system. These factors suggest that 3-D cell model systems may more accurately model drug sensitivity and resistance, and therefore more accurately predict human response to drug. Accordingly, such systems are highly coveted as tools for researchers, but they can be difficult to generate.

The work was supported by the Neurofibromatosis Therapeutic Acceleration Program (, based in The Johns Hopkins School of Medicine in Baltimore.